Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The role of inertial energy transfer in uniformly distorted homogeneous turbulence

Identifieur interne : 00DF66 ( Main/Exploration ); précédent : 00DF65; suivant : 00DF67

The role of inertial energy transfer in uniformly distorted homogeneous turbulence

Auteurs : L. W. B. Browne [Australie] ; E. J. Hopfinger [France] ; P. Caperan [France]

Source :

RBID : ISTEX:E9DA891FA22D7F378F9807FCC8B06827DDFD1BC9

English descriptors

Abstract

Abstract: Homogeneous turbulence was subjected to plane strain in a distorting tunnel of maximum strain ratio 13:1. The turbulence was generated by using bi-planar grids of square bars with different solid fractions and a range of mean flow velocities, so that relative strain rates could be varied by about a factor of three; relative strain rate being here defined as the ratio of strain rate to initial eddy turnover rate. The change in anisotropies of the turbulence intensities and also of the velocity derivatives are found to depend strongly on the relative strain rate and so does the change in turbulent kinetic energy. This dependency is explained in terms of the ratio of turbulence production to dissipation rates which are related to the relative strain rate. An interesting feature is the inflexion in the anisotropy versus strain ratio curve observed for low relative strain rates. This is thought to be a result of an ‘overshoot’ of pressure strain rates.

Url:
DOI: 10.1016/0169-5983(86)90003-1


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>The role of inertial energy transfer in uniformly distorted homogeneous turbulence</title>
<author>
<name sortKey="Browne, L W B" sort="Browne, L W B" uniqKey="Browne L" first="L. W. B." last="Browne">L. W. B. Browne</name>
</author>
<author>
<name sortKey="Hopfinger, E J" sort="Hopfinger, E J" uniqKey="Hopfinger E" first="E. J." last="Hopfinger">E. J. Hopfinger</name>
</author>
<author>
<name sortKey="Caperan, P" sort="Caperan, P" uniqKey="Caperan P" first="P." last="Caperan">P. Caperan</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:E9DA891FA22D7F378F9807FCC8B06827DDFD1BC9</idno>
<date when="1986" year="1986">1986</date>
<idno type="doi">10.1016/0169-5983(86)90003-1</idno>
<idno type="url">https://api.istex.fr/document/E9DA891FA22D7F378F9807FCC8B06827DDFD1BC9/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002C03</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002C03</idno>
<idno type="wicri:Area/Istex/Curation">002C03</idno>
<idno type="wicri:Area/Istex/Checkpoint">002D95</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">002D95</idno>
<idno type="wicri:doubleKey">0169-5983:1986:Browne L:the:role:of</idno>
<idno type="wicri:Area/Main/Merge">00F203</idno>
<idno type="wicri:Area/Main/Curation">00DF66</idno>
<idno type="wicri:Area/Main/Exploration">00DF66</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">The role of inertial energy transfer in uniformly distorted homogeneous turbulence</title>
<author>
<name sortKey="Browne, L W B" sort="Browne, L W B" uniqKey="Browne L" first="L. W. B." last="Browne">L. W. B. Browne</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Department of Mechanical Engineering, University of Newcastle, N.S.W. 2308</wicri:regionArea>
<wicri:noRegion>N.S.W. 2308</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hopfinger, E J" sort="Hopfinger, E J" uniqKey="Hopfinger E" first="E. J." last="Hopfinger">E. J. Hopfinger</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Associé au CNRS, Institut de Mécanique de Grenoble, Domaine Universitaire, 38402 St. Martin d'Hères Cedex</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Rhône-Alpes</region>
<settlement type="city">St. Martin d'Hères</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Caperan, P" sort="Caperan, P" uniqKey="Caperan P" first="P." last="Caperan">P. Caperan</name>
<affiliation wicri:level="1">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Associé au CNRS, Institut de Mécanique de Grenoble, Domaine Universitaire, 38402 St. Martin d'Hères Cedex</wicri:regionArea>
<wicri:noRegion>38402 St. Martin d'Hères Cedex</wicri:noRegion>
<wicri:noRegion>38402 St. Martin d'Hères Cedex</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Fluid Dynamics Research</title>
<title level="j" type="abbrev">FLUDYN</title>
<idno type="ISSN">0169-5983</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1986">1986</date>
<biblScope unit="volume">1</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="3">3</biblScope>
<biblScope unit="page" to="19">19</biblScope>
</imprint>
<idno type="ISSN">0169-5983</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0169-5983</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absolute values</term>
<term>Anisotropy</term>
<term>Anisotropy curve</term>
<term>Anisotropy development</term>
<term>Anisotropy increases</term>
<term>Approximate isotropy</term>
<term>Axisymmetric state</term>
<term>Browne</term>
<term>Calibration direction</term>
<term>Derivative</term>
<term>Distortion</term>
<term>Distortion duct</term>
<term>Distortion section</term>
<term>Duct</term>
<term>Effective wire cooling velocity</term>
<term>Energy density</term>
<term>Energy density ratio case</term>
<term>Energy tensor</term>
<term>Experimental conditions</term>
<term>Filter frequency</term>
<term>Fluctuation</term>
<term>Fluid mech</term>
<term>Grid</term>
<term>Grid geometry</term>
<term>Grid turbulence</term>
<term>High turbulence</term>
<term>High wave number</term>
<term>Inertial</term>
<term>Inertial energy transfer</term>
<term>Initial conditions</term>
<term>Inlet section</term>
<term>Integral length scale</term>
<term>Isotropic relation</term>
<term>Isotropy</term>
<term>Kinetic energy</term>
<term>Longitudinal</term>
<term>Marechal</term>
<term>Maximum strain ratio</term>
<term>Mech</term>
<term>Normal stress anisotropy</term>
<term>Pitot tube</term>
<term>Plane strain</term>
<term>Preliminary tests</term>
<term>Pressure diffusion terms</term>
<term>Pressure strain</term>
<term>Pressure strain rates</term>
<term>Relative importance</term>
<term>Relative strain rate</term>
<term>Relative strain rate situation</term>
<term>Relative strain rates</term>
<term>Relaxation section</term>
<term>Reynolds</term>
<term>Reynolds number</term>
<term>Signal processing</term>
<term>Small scale anisotropy</term>
<term>Small scales</term>
<term>Spectral distributions</term>
<term>Square bars</term>
<term>Strain rate</term>
<term>Strain rate situation</term>
<term>Strain ratio</term>
<term>Time scale</term>
<term>Townsend</term>
<term>Transverse structure functions</term>
<term>Turbulence</term>
<term>Turbulence intensities</term>
<term>Turbulence intensity</term>
<term>Turbulence returns</term>
<term>Turbulence reynolds number</term>
<term>Turbulent</term>
<term>Turbulent intensities</term>
<term>Turbulent velocity fluctuations</term>
<term>Universite scientifique</term>
<term>Velocity components</term>
<term>Velocity derivatives</term>
<term>Velocity fluctuations</term>
<term>Wave number</term>
<term>Wave numbers</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Absolute values</term>
<term>Anisotropy</term>
<term>Anisotropy curve</term>
<term>Anisotropy development</term>
<term>Anisotropy increases</term>
<term>Approximate isotropy</term>
<term>Axisymmetric state</term>
<term>Browne</term>
<term>Calibration direction</term>
<term>Derivative</term>
<term>Distortion</term>
<term>Distortion duct</term>
<term>Distortion section</term>
<term>Duct</term>
<term>Effective wire cooling velocity</term>
<term>Energy density</term>
<term>Energy density ratio case</term>
<term>Energy tensor</term>
<term>Experimental conditions</term>
<term>Filter frequency</term>
<term>Fluctuation</term>
<term>Fluid mech</term>
<term>Grid</term>
<term>Grid geometry</term>
<term>Grid turbulence</term>
<term>High turbulence</term>
<term>High wave number</term>
<term>Inertial</term>
<term>Inertial energy transfer</term>
<term>Initial conditions</term>
<term>Inlet section</term>
<term>Integral length scale</term>
<term>Isotropic relation</term>
<term>Isotropy</term>
<term>Kinetic energy</term>
<term>Longitudinal</term>
<term>Marechal</term>
<term>Maximum strain ratio</term>
<term>Mech</term>
<term>Normal stress anisotropy</term>
<term>Pitot tube</term>
<term>Plane strain</term>
<term>Preliminary tests</term>
<term>Pressure diffusion terms</term>
<term>Pressure strain</term>
<term>Pressure strain rates</term>
<term>Relative importance</term>
<term>Relative strain rate</term>
<term>Relative strain rate situation</term>
<term>Relative strain rates</term>
<term>Relaxation section</term>
<term>Reynolds</term>
<term>Reynolds number</term>
<term>Signal processing</term>
<term>Small scale anisotropy</term>
<term>Small scales</term>
<term>Spectral distributions</term>
<term>Square bars</term>
<term>Strain rate</term>
<term>Strain rate situation</term>
<term>Strain ratio</term>
<term>Time scale</term>
<term>Townsend</term>
<term>Transverse structure functions</term>
<term>Turbulence</term>
<term>Turbulence intensities</term>
<term>Turbulence intensity</term>
<term>Turbulence returns</term>
<term>Turbulence reynolds number</term>
<term>Turbulent</term>
<term>Turbulent intensities</term>
<term>Turbulent velocity fluctuations</term>
<term>Universite scientifique</term>
<term>Velocity components</term>
<term>Velocity derivatives</term>
<term>Velocity fluctuations</term>
<term>Wave number</term>
<term>Wave numbers</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Homogeneous turbulence was subjected to plane strain in a distorting tunnel of maximum strain ratio 13:1. The turbulence was generated by using bi-planar grids of square bars with different solid fractions and a range of mean flow velocities, so that relative strain rates could be varied by about a factor of three; relative strain rate being here defined as the ratio of strain rate to initial eddy turnover rate. The change in anisotropies of the turbulence intensities and also of the velocity derivatives are found to depend strongly on the relative strain rate and so does the change in turbulent kinetic energy. This dependency is explained in terms of the ratio of turbulence production to dissipation rates which are related to the relative strain rate. An interesting feature is the inflexion in the anisotropy versus strain ratio curve observed for low relative strain rates. This is thought to be a result of an ‘overshoot’ of pressure strain rates.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
</country>
<region>
<li>Auvergne-Rhône-Alpes</li>
<li>Rhône-Alpes</li>
</region>
<settlement>
<li>St. Martin d'Hères</li>
</settlement>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Browne, L W B" sort="Browne, L W B" uniqKey="Browne L" first="L. W. B." last="Browne">L. W. B. Browne</name>
</noRegion>
</country>
<country name="France">
<region name="Auvergne-Rhône-Alpes">
<name sortKey="Hopfinger, E J" sort="Hopfinger, E J" uniqKey="Hopfinger E" first="E. J." last="Hopfinger">E. J. Hopfinger</name>
</region>
<name sortKey="Caperan, P" sort="Caperan, P" uniqKey="Caperan P" first="P." last="Caperan">P. Caperan</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00DF66 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 00DF66 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:E9DA891FA22D7F378F9807FCC8B06827DDFD1BC9
   |texte=   The role of inertial energy transfer in uniformly distorted homogeneous turbulence
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024